Harold C. Pillsbury and Steven S. Ball


To improve success rates, a number of methods have been proposed to select patients who will respond favorably to UPPP: somnofluoroscopy, pharyngeal computed tomography (CT) scan, awake fiberoptic endoscopy with and without Muller’s maneuver, asleep endoscopy with continuous positive airway pressure (CPAP), airway manometry, and cephalometry.2 Two of these method—fiberoptic endoscopy with Muller’s maneuver (FEMM) and lateral cephalometry—are relatively inexpensive and readily accessible to the clinician. Initial studies concluded that they were useful for predicting UPPP success.46


Early cephalometric studies suggested that those who fail to benefit from UPPP have narrow retrolingual airways. Riley et al4 and Gislason et al.5 found that nonresponders have a narrow posterior airway space (distance between the base of the tongue and posterior pharyngeal wall), an inferiorly positioned hyoid, and macroglossia. In contrast, Ryan et al.7 demonstrated that patients with a narrow posterior airway space are actually more likely to respond to UPPP. More recent studies have not shown a significant difference between responders and nonresponders.810 Therefore, the value of traditional cephalometric analysis in predicting response to UPPP is low. Despite its low predictive efficacy, cephalometry continues to be studied intensively. In a recent study, cephalometric analysis was useful for selecting UPPP responders when OSA patients were stratified by skeletal type.11 Such studies hold promise that cephalometry may reliably be used to predict response to UPPP in the future.


Awake FEMM has also been proposed to help identify good UPPP candidates. Sher et al.6 introduced fiberoptic endoscopy for the preoperative evaluation of patients with OSA. Sher found the predictive value of FEMM to be high; 87% of patients with collapse confined to the velopharynx during FEMM had greater than 50% reduction in AI. In contrast, Katsantonis et al.12 and Aboussouan et al.13 were unable to predict success for patients with velopharyngeal collapse. However, these investigators found that FEMM has a high negative predictive value; in other words, they were able to predict failure for those with hypopharyngeal collapse. They concluded that FEMM may be useful in identifying poor UPPP candidates, that is, patients with hypopharyngeal collapse. Still other workers have concluded that FEMM has no predictive value.10, 14


Lateral cephalometry and FEMM have not been universally accepted or validated for selecting OSA patients who will respond to UPPP. Although objective, easily accessible, and relatively inexpensive, the predictive value of both techniques is low, as they may not localize the critical obstructive patho-physiology that occurs in OSA patients during sleep. It is also possible that these methods may identify the site of obstruction, but that UPPP surgery does not reliably alleviate the abnormality that causes OSA. Several studies have demonstrated that in most UPPP failures the level of obstruction is retropalatal.1517 Persistent obstruction at the level of the palate may account for the low predictive efficacy of techniques such as fiberoptic endoscopy and lateral cephalemetry.


A thorough history and physical examination are extremely important in evaluating patients for OSA. Patients with OSA frequently complain of snoring, restless and fragmented sleep, excessive daytime sleepiness, morning headaches and confusion, and poor work performance. The typical patient is overweight with a short, fat neck. Examination of the oral cavity, nose, and pharynx is critical. Patients often have an elongated soft palate and uvula associated with laxity of the posterior and lateral pharyngeal walls and tonsillar pillars. The tonsils may be enlarged, although tonsils of normal size may contribute to airway obstruction as a result of oropharyngeal size or ptosis. In addition, mandibular size, height and shape of the hard palate, and tongue size and position are assessed. Nasal examination is important to rule out nasal obstructive lesions such as septal deviation, nasal polyposis, turbinate hypertrophy, and adenoid hypertrophy. To examine the pharynx, flexible fiberoptic endoscopy is performed; thus, specific space-occupying lesions are identified. Approximately 3 in 200 adult patients with OSA have such a lesion.2 Surgical removal will correct OSA. Finally, medical disorders such as hypothyroidism, amyloidosis, and other matabolic storage disorders that may contribute to upper airway obstruction must be ruled out if appropriate.


All patients suspected of having OSA on the basis of history and physical examination are evaluated with polysomnography (PSG). Patients diagnosed with OSA by PSG are first treated medically. They are counseled to avoid alcohol and sedative medication, to lose weight, and to alter sleep position if the apnea is position related. However, behavior modifications alone are rarely successful. Mechanical devices that affect oral and pharyngeal mechanics benefit some patients. Most with OSA require nasal CPAP, the mainstay of medical therapy. It is highly effective for treating OSA when properly and consistently used.18 In addition, CPAP, unlike UPPP, has been shown to reduce mortality.3 CPAP, however, is often poorly tolerated, making long-term compliance a problem.

Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Jun 5, 2016 | Posted by in OTOLARYNGOLOGY | Comments Off on Harold C. Pillsbury and Steven S. Ball

Full access? Get Clinical Tree

Get Clinical Tree app for offline access