Techniques for facelift surgery have advanced rapidly over recent years in order to provide for optimal aesthetic results, minimal postsurgical recovery time, and few complications. As patients have become more sophisticated and demanding, increased competition has fueled the already ongoing pursuit for the ideal surgery, further stimulating the development of improved methods of rhytidectomy. Despite a multitude of techniques for facelifting, each can be effective in the right hands, and there is no single best method that is universally applicable. The specific technique or techniques employed by a surgeon depend largely on his or her background, training, and experience. As with any other surgical procedure, the rhytidectomy technique should be based on sound scientific and surgical principles. It should also yield reliable time-tested results, with complications occurring at a rate comparable to that of the existing gold standard. Ultimately, the success of a facelift technique is based on patient acceptance and satisfaction, the basis for a fulfilling surgical practice. Although there are several different ways to perform a facelift, an ongoing debate continues regarding the subcutaneous musculoaponeurotic system (SMAS) and deep-plane rhytidectomy techniques. This may be because the SMAS lift has been the most widely used technique for an entire generation of surgeons, and the deep-plane technique is closely related, differing in only a few important technical points. Unlike the subperiosteal or endoscopic lifts, which require advanced instrumentation and novel concepts regarding tissue rearrangement, healing, and aesthetics, the deep-plane operation may seem somewhat familiar to those surgeons who routinely perform the SMAS lift, and thus more worthy of consideration. In fact, it may be the close similarity between these two techniques that has stimulated their differentiation and comparison among the surgical community. Those surgeons who routinely perform SMAS lifts believe the differences in outcome are not worth making the change. They also argue that there is an increased risk of nerve damage with the deep-plane technique and that this outweighs any perceived aesthetic benefit one might obtain.1,2 Advocates of the deep-plane technique consider the results extremely beneficial, with few complications, and contend that performing a less effective lift would be doing a disservice to their patients.3, 4 It is difficult, if not impossible, to compare these techniques objectively because of the subjective nature of the results and the lack of an endpoint to determine the length of time the results last. Therefore, rather than attempt to provide a purely objective analysis, this discussion is based on reports from the literature as well as the experience of the senior author, who was for many years an innovator and leading proponent of the SMAS lift until making the transition to the deep-plane rhytidectomy. The background of these procedures, as well as their technical details, is described, with specific controversial issues addressed. It is hoped that the reader will be stimulated to consider alternative options when performing facelifts in the future. Background Historically, rhytidectomy began during the early twentieth century as a very limited procedure involving minimal subcutaneous undermining and excision of redundant skin.5 The modern concept of facelift surgery began in 1974, when Skoog6 described a subplatysmal technique in a deeper anatomic plane of the face that he believed was useful for facelift surgery. The research conducted by Mitz and Peyronie,7 which identified and clarified the relationship and dynamics of the superficial musculoaponeurotic system (SMAS) and the platysma, fostered a generation of surgeons, the senior author included, who advocated the aesthetic benefits of the SMAS lift. The 1980s generated a number of variations of the SMAS technique, most having to do with vectors of pull and management of the midline platysma fibers. The senior author in 1981, and Owsley in 1983, each described a sub-SMAS and subplatysmal dissection with superoposterior suspension of the lower face and neck combined with subcutaneous undermining and lateral traction of the mid- and upper cheek to produce a “bidirectional”; rhytidectomy.8, 9 During this same period, a few practitioners of the Skoog technique modified and advancedthe subplatysmal concepts that culminated in the refinements described by Lemmon and Hamra. In 1980, Lemmon and Hamra10 published a variation of the Skoog technique involving a series of 577 patients. Lemmon and Hamra reported fewer contour irregularitiesin the face and a longer-lasting result in the neck with no increase in complications. After improving on his initial operation, Hamra11 originally described the deep-plane rhytidectomy in 1990. Since that time there has been increased acceptance and use of the deep-plane technique, which is used by the authors and described in this chapter. The senior author” experience with the SMAS technique began during the mid-1970s and involved approximately 2500 facelift operations over the next 15 to 20 years. The results were found to be aesthetically superior, more predictable, and longer lasting than had been obtained with the previous, less extensive, dissection techniques. Nevertheless, some inadequacies and small problems associated with the SMAS technique ultimately served as the incentive to search for an improved facelift technique. In 1996 the results of Kamer”12first 100 consecutive deep-plane facelifts were analyzed and reported, demonstrating the benefits of this technique and the lack of associated complications. Since that report, the senior author has performed the deep-plane operation predominantly, and the results have been under continual assessment. Technique The sub-SMAS (deep-plane) facelift is based on sound surgical principles of tissue mobilization, advancement, and repair. It is important to remember, when repositioning tissue, that the structures influenced by undermining are usually from the point of incision to the most distal point of dissection, but not beyond. The surgical incisions for the two operations are identical. Platysmal plication is performed when there is notable laxity to the anterior platysmal fibers. The technique for this portion of the operation is also identical for both the SMAS and deep-plane operations. A subcutaneous dissection is begun in the pretragal area and is extended approximately 3 to 4 cm toward the cheek. It continues inferiorly into the neck, below the body of the mandible. This preplatysmal plane is widely undermined toward the midline, joining the subcutaneous submental dissection overlying the previously plicated anterior platysmal bands. In the scalp, the temporoparietal fascia and galea are separated from the deep temporal fascia in an areolar plane, with care taken to avoid injury to the temporal branch of the facial nerve as the dissection proceeds anteriorly toward the lateral brow. Entrance to the sub-SMAS deep plane in the face is facilitated by retracting the skin and subcutaneous tissues, tenting up the SMAS and the platysma. An incision is outlined (leaving approximately a 1-cm “tongue”; of SMAS attached to the skin) from the malar region, extending inferiorly toward the posterior border of the platysma, just beneath the angle of the mandible. Traction is maintained as the SMAS is dissected from the deeper parotidomasseteric fascia. Dense fibrous attachments between the superficial and deep fascias exist along the zygomatic arch, overlying the parotid gland, and along the anterior border of the masseter muscle. A less adherent areolar plane exists between the superficial and deep fascias in the cheek, directly overlying the masseter muscle, and beneath the platysma. Dissection is facilitated by vertically spreading the scissors directly along the underside of the platysma, peeling the fat and loose areolar tissue off this structure. Sharp dissection is required to transect the parotidocutaneous, masseteric cutaneous, and zygomatic osteocutaneous ligaments. The sub-SMAS plane is suprisingly avascular, but for a perforating branch of the transverse facial artery, which is relatively constant in the cheek. The extent of anterior dissection is dependent on the amount of mobilization necessary to attain the required aesthetic result. To influence the malar bags, dissection must proceed beneath the inferior border of the orbicularis, transecting the thick osteocutaneous ligaments of the malar pad (MacGregor” patch). The nasolabial fold is approached by undermining the fascial-fatty layer of the cheek overlying the major and minor zygomatic muscles. Blunt finger dissection easily separates this plane overlying the mimetic muscles and continues anteriorly toward the nose and upper lip. As the facial nerve innervates these muscles from their deep surfaces, it is important for the surgeon to remain in a plane superficial to the zygomatic muscles. If this area is approached from the inferior subplatysmal dissection, the nerve can become subject to injury, as the SMAS envelops these muscles, and there is danger of dissecting beneath them into this deeper plane. The dissection of the prezygomatic area can be connected with the subplatysmal undermining as the dissection proceeds inferiorly. Fibrous attachments between the two planes are severed, but the confluence of mimetic muscles at the corner of the mouth (modiolus) is not disturbed. The jowl area is undermined. An areolar plane exists over-lying the masseter muscle, allowing the SMAS to be rapidly elevated by means of a blunt technique from the anterior border of the parotid gland as far forward as the anterior border of the masseter, where the fibrous septae of the masseteric-cutaneous ligaments are encountered. These are severed, and the dissection in the subplatysmal plane is continued anteriorly over the masseter muscle border and inferiorly to the border of the mandible, extending anteriorly to where the facial artery crosses. As long as the underlying parotidomasseteric fascia is not violated during this dissection, injury to the marginal mandibular nerve and vessels is highly unlikely. Further subplatysmal dissection inferior to the mandible is unnecessary. A subcutaneous plane in the neck has already been created.