Eric M. Genden and Mark L. Urken


The role of free flap surgery in contemporary head and neck reconstruction is the culmination of several decades of trying to solve a select group of reconstructive challenges, using conventional local and regional flaps, as well as an evolution in technique and technology that have enhanced the safety and reliability of this method of reconstruction. Although the first successful free flap in humans was performed in 1959, it took several decades before free tissue transfer surgery became a widely accepted method of head and neck reconstruction.1 Initially, it was the problem of the pharyngoesophageal defect and the segmental mandibulectomy defect that provided the impetus for applying microvascular surgery to the head and neck region. Over the past decade, advances in skull base surgery have led to new reconstructive demands for reliable soft tissue flaps, in order to permit the safe application of new surgical techniques to remove benign and malignant neoplasms located at the cranial base. The role of free flaps in contemporary head and neck reconstruction has become much broader than for these three defects. Reinnervated flaps have been used to restore dynamic activity for patients with facial paralysis and to restore sensation to the lining of the upper aerodigestive tract. However, a discussion of the history and of the requirements for successful restoration of circumferential pharyngoesophageal defects, segmental mandibular defects, and extensive skull base defects serves as the focus of this chapter on the role of free tissue transfer in head and neck reconstruction.


Before 1963, postablative surgical defects were either closed primarily or with random pattern or axial pattern skin flaps. As a result, functional and cosmetic outcomes were often quite poor. Limited mobility and reliability restricted the use of such donor sites as the nape of neck, acromial thoracic, and forehead flaps. These donor sites supplied a small area of cutaneous tissue with a limited arc of rotation and little or no bulk. The reconstructive techniques available at the time often limited the extent of an ablative surgical resection, compromising curative surgical therapy. Free tissue transfer in the head and neck was first reported in 1959 by Seidenberg et al.,1 who, without the benefit of an operating microscope, transferred a free jejunal segment for reconstruction of a circumferential mucosal defect after a laryngopharyngectomy. Although free tissue transfer was a novel reconstructive approach, limited donor sites, as well as extensive, often exhaustive, intraoperative time requirements, and technical limitations, prevented its widespread acceptance.


The introduction of the pedicled latissimus dorsi myocutaneous flap by Olivari,2 in 1976, led the way for the next reconstructive technologic breakthrough, the myocutaneous flap. Along with the latissimus flap, the pectoralis flap, introduced by Ariyan in 1979,3 and the trapezius flap4 described shortly thereafter, composed the vast majority of the head and neck reconstructive armamentarium. These flaps were reliable and easy to harvest and served to reconstruct a wide range of soft tissue defects of the head and neck. The rich vascular supply of the muscle component of these myocutaneous flaps served to protect the carotid artery, while providing the reconstructive surgeon with a one-stage reconstruction that was relatively simple to harvest. However, it soon became apparent that complex hard and soft tissue defects of the pharyngoesophagus, mandible, and skull base were poorly managed by pedicled flap reconstruction. Attempts at tubing myocutaneous flaps were often fraught with complications. Similarly, mandibular reconstruction by transferring rib with pectoralis muscle led to limited success.5 Although regional myocutaneous flaps were thought to be the panacea, it became evident that predictable reconstruction of the mandibular, pharyngoesophageal, and skull base defects required a more sophisticated form of reconstruction. Furthermore, the impetus for an improved functional outcome in these areas encouraged the development of reliable free tissue transfer. During the mid- and late 1970s, when most head and neck surgeons relied on pedicled myocutaneous flaps, Taylor et al.6 and others7 identified a series of free tissue donor sites with longer and larger-diameter vascular pedicles, which resulted in a dramatic improvement in reliability and applicability. In addition to soft tissue donor sites, several composite bone flaps were described. All head and neck reconstruction has benefited from these developments in free tissue transfer, but reconstruction of the pharyngoesophagus, mandible, and the skull base have shown the most profound improvements.


Pharyngoesophageal Reconstruction


Early reconstruction of circumferential pharyngoesophageal defects represented one of the most challenging dilemmas for the reconstructive head and neck surgeon. The inability to reestablish continuity of the cervical esophagus resulted in a chronic pharyngocutaneous fistula often leading to infection and a poor outcome. Early attempts to remedy this problem led Czerny8 Mikulicz,9 and Trotter10 to use cervical skin flaps in a staged reconstruction. This approach proved unreliable, requiring multiple stages and prolonged hospitalization; it was commonly associated with a high rate of morbidity as a result of flap necrosis and eventual wound breakdown. Nearly a half-century later, Wookey reintroduced this technique, redesigning the cervical flaps with a wide pedicle, which resulted in a more reliable two-stage reconstruction. Although this was an improvement, a review of 148 patients reconstructed in this fashion, demonstrated that these patients required prolonged hospitalization ranging from 6 to 16 weeks, and 94% sustained some form of postoperative complication related to the reconstruction.11 Complications, including stenosis, fistula, or flap necrosis, required an average of three corrective procedures prior to successful resumption of deglutition. The limitations associated with random pattern skin flaps led to the application of the deltopectoral and, soon thereafter, the pectoralis major myocutaneous flap.


The deltopectoral flap offered reconstructive surgeons a source of reliable, well-vascularized tissue from a regional site, which was particularly useful in irradiated patients. Although this technique was an improvement over prior reconstructive methods, there were disadvantages of a staged procedure with the mandatory creation of a pharyngostome, as well as an unacceptably high complication rate (56%).11 The drive to reconstruct the pharyngoesophagus primarily, influenced Withers et al.12 and Baek et al.13 to report on the use of a tubed pectoralis major flap as a method of “immediate” reconstruction of circumferential defects of the pharynx and cervical esophagus. The pectoralis major flap offered the advantage of introducing nonirradiated muscle to the reconstruction site. However, the bulky nature of the flap lacked the necessary pliability to comfortably create a circumferencial skin tube and thereby hindered the reconstruction in many patients. As a result, most tube-shaped pectoralis major pharyngoesophageal reconstructions required the formation of a controlled fistula, either at the time of primary reconstruction or as a result of an often inevitable postoperative wound dehiscence.


In an effort to address the problems associated with delayed reconstruction, and the requirement for thin, pliable tissue, a variety of pedicled visceral flaps were introduced.1416 The theoretical advantages of the gastric pull-up include a single anastomosis and hence less potential for anastomotic failure, a source of thin, pliable, nonirradiated tissue, and the opportunity for immediate reconstruction. Unfortunately, these advantages did not translate into a reliable method of reconstruction. Surkin et al.11 found mortality to range from 10% to 15%, and 50% of patients sustained major abdominal, medical, or thoracic complications. Although anastomotic stenosis is uncommon, patients often suffer from an uncontrolled regurgitation of gastric contents, or a “dumping syndrome,” as a result of the atonic gastric segment. Although the gastric pull-up still plays a role in contemporary reconstruction of the thoracic esophagus, its routine use in cervicoesophageal reconstruction has been limited because of the unacceptably high complication rate and the introduction of less morbid and more reliable alternatives.


Microvascular free tissue transfer has been widely applied in contemporary head and neck reconstruction, and its impact on the primary reconstruction of the pharyngoesophagus has been profound. The drive to circumvent the morbidity associated with delayed reconstruction led to the application of free tissue transfer for pharyngoesophageal reconstruction. Seidenberg et al.1 first introduced free jejunal transfer in 1959, but this technique lay dormant for many years until 1975, when free jejunal reconstruction became increasingly popular as reported in the head and neck literature. Since then, a host of donor sites have been described for the reconstitution of circumferential defects, including visceral flaps such as the tubed gastro-omental free flap17 and free colon segments, as well as tubed cutaneous free flaps.18 Harii et al.19 were the first to report their success in using tube-shaped cutaneous radial forearm flaps. This approach offered an attractive alternative to the necessity for a laparotomy, with its attendant morbidity, to harvest a visceral flap.19 Several different cutaneous flaps have since been applied in a similar manner, including the lateral thigh20 and ulnar forearm flaps.21


Colonic segments have been used as free flaps based on the ileocolic, middle colic, and sigmoid arteries. Although this donor site is no longer the primary choice for reconstruction of the pharyngoesophagus, the mucosa-lined colon offers an inner lining similar to the native pharynx. Its large diameter facilitates the pharyngeal anastomosis, but it can present some difficulty at the distal esophageal anastomotic site.


Free jejunal autografts offer several advantages over the free colon transfer, including the ability to harvest large segments of jejunum with little or no functional gastrointestinal disturbance. The popularity of the free jejunal autograft in head and neck reconstruction22 stemmed from its diversity as a reconstructive tool. The mucosal tube can be split to reconstruct a defect in the posterior pharyngeal wall, or it can be used as a circumferential mucosal tube for primary reconstruction of the cervical esophagus and hypopharynx. Splitting the jejunal segment along its antemesenteric border can facilitate the resurfacing of defects that extend to the oral cavity. Furthermore, a jejunal harvest does not require preoperative bowel preparation and has less potential for postoperative complications as compared with the colon donor site. Similar to the colon, the jejunum offers the advantage of providing a mucosa-lined conduit; however, the diameter of the jejunum more closely approximates that of the pharyngoesophagus. The distant harvest site permits a two-team approach. The harvest itself is technically easy, usually requiring less than 1 hour to perform.


Tube-shaped cutaneous free flaps offer a source of thin and pliable tissue ideal for the primary reconstruction of the pharyngoesophagus. The enhanced pliability and vascularity of the radial forearm, lateral thigh, ulnar forearm,21

Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Jun 5, 2016 | Posted by in OTOLARYNGOLOGY | Comments Off on Eric M. Genden and Mark L. Urken

Full access? Get Clinical Tree

Get Clinical Tree app for offline access