Since the publication of the first successful transfer of a free flap for oral cavity reconstruction by Panje et al.,1 the use of microvascular surgery for tissue transfer to reconstruct defects within the head and neck has flourished. The initial reports primarily involved discussions of the feasibility and reliability of this highly specialized tissue transferring technique.2–4 Other publications included descriptions of the type of reconstructions that could be successfully accomplished with free flap transfer.5–8 The objectives of any reconstructive technique are to preserve function and reestablish form. The refinements of head and neck reconstructive techniques over the past 20 years have enhanced the ability of the otolaryngologist–head and neck surgeon to achieve these goals in many cases, but there continue to be times when both cannot be achieved. When a variety of techniques are available that are reported to achieve the same goal, there is the potential for confusion and controversy as to which is the most appropriate technique. That is certainly the case with the array of tissue transfer approaches that are currently available to contemporary otolaryngologist–head and neck surgeons involved in facial reconstruction. This book deals with controversies, as well as a discussion of the topic of the role of free flaps in head and neck reconstruction within that theme. It is the goal of this chapter to identify those issues that are relevant to the controversies concerning the role of free flaps in head and neck surgery, in an effort to help the reader identify the issues. Thus, decisions about utilization can be made in an objective fashion based on factual information. The chapter includes discussions of the advantages and disadvantages of free flaps and identifies issues that continue to be unresolved about the use of this technique. The use of free flaps for a variety of reconstructive tasks is also discussed. Advantages Microvascular surgery provides the capability of reestablishing blood flow to a variety of tissues transferred into the head and neck from distant sites, so that reconstruction can be completed in one operation. This is in contrast to other tissue-transferring techniques, such as regional flaps, which often require a second operation to detach the pedicle of the tissue used in reconstruction. The only regional flap that provides for immediate one-stage transfer of tissue into the defect comparable to free flap techniques are the musculocutaneous flaps. But free flaps often-times provide greater versatility than the regional flaps, including the musculocutaneous flaps, because the thickness of the tissue can be controlled by the selection of a particular free flap. A free flap can be thick, such as the musculocutaneous rectus abdo-minis free flap, or it can be quite thin, such as the fasciocutaneous radial forearm free flap. This ability to select the thickness of tissue represents a unique advantage for the free flaps. Free flaps also provide an opportunity to transfer a variety of types of tissue into the head and neck. Depending on the selection of free flap, it is possible to transfer skin and subcutaneous tissue as a single entity, as well as muscle, fascia, bone, and even nerve–muscle combinations to achieve goals of reanimation. This flexibility to transfer a combination of different types of tissue facilitates surgical creativity to tailor precisely the reconstruction to the defect by replacing the type of tissue that has been destroyed by cancer or trauma. It therefore provides an enhanced ability to achieve the objectives of restoration of form and preservation of function that is superior to alternative reconstructive techniques. Disadvantages As with any technique, there are disadvantages. One of the primary disadvantages of microvascular surgery is that it continues to be a technically challenging technique that requires expertise and experience. There is no debate about this issue, and it is clear that continuing surgical experience elevates the expertise and success rate. It is doubtful that the surgeon who occasionally performs microvascular surgery can achieve the proficiency of one who regularly makes use of these techniques. There is also no question that the surgeon who regularly performs tissue transfer techniques with the regional flaps also improves proficiency and success, although this is probably less impacted by frequency of utilization with the pedicled musculocutaneous flaps than it is for microvascular surgery. Although not totally established, many would state that free flaps add operative time compared with some of the alternative tissue-transferring techniques.9 In addition, most free flap transfers are performed by a second operative team which is not necessary for reconstructions involving regional flaps. Another potential disadvantage is that free flaps are often dependent on donor vessels that are within the field of treatment, whether that be surgery or radiation therapy. Both therapeutic modalities, whether performed before, during, or after the free flap transfer, have the potential to have an adverse impact on the flap’s success or failure. Once again, this is in distinction to the regional flaps that are not reliant on donor vessels within the treated area. Free flaps are also limited more than the regional flaps by the patient’s comorbid conditions. Any health problems that can affect the blood vessels have to be viewed as a concern and possibly a contraindication for the use of microvascular surgery. Therefore, conditions such as diabetes mellitus or atherosclerosis, or both, can become relative, or even absolute contraindications to free flap transfer. The presence of such conditions, however, is not a contraindication to the use of regional flaps. Another potential disadvantage is the reality that the failure of a free flap oftentimes results in total loss of the tissue that has been transferred. Once again, this differs from the regional flaps where partial failure can occur which does not always result in the need for another operation to transfer tissue. Unfortunately, many of the advantages and disadvantages cited are based on opinions from experienced reconstructive surgeons, rather than facts. As a result, there continues to be a wide array of unresolved issues regarding which reconstructive technique is most appropriate for a given situation. Unresolved Issues A variety of tissue transferring techniques are available for head and neck reconstruction, including skin grafts, regional skin flaps, acellular dermal graft (Alloderm, Lifecell Corporation, The Woodlands, TX),10 musculocutaneous flaps, and free flaps. All these techniques have been published in the literature. However, a major issue remains unresolved: which reconstructive technique represents the optimal approach for a particular defect or deformity. The critically important first step in resolving such a controversy is to agree on the goals of reconstruction. The traditional goals are restoration of form and preservation of function. However, contemporary dynamics in health care in the United States require that other goals be included. Reconstructions of defects created with ablation of advanced-stage malignancies really need to be completed at the time of the resection, rather than with a technique that requires multiple stages. The primary reason is that patients with advanced-stage lesions are now part of multimodal therapeutic protocols that require administration of adjuvant therapy within a specific time period, for optimal impact on disease erradication. Therefore, those tissue-transferring techniques that are capable of completing the reconstruction in one stage certainly are preferred. Many issues affect the overall cost of the reconstructive procedure achieved in the most cost-effective fashion—a clear goal. The assumption is that microvascular surgery can be more costly because it adds operative time and is usually undertaken with two separate surgical teams. However, the added cost associated with these two factors could be offset by the claims of some that length of stay is shorter with free flaps because of the presumed decreased incidence of fistulization or other wound-healing problems associated with regional flaps. Although some investigators have looked into the issue of cost, comparing hospitalization costs associated with free flap reconstruction with the costs associated with regional flaps,11, 12 an accurate total cost of care for patients undergoing different reconstructive techniques remains to be calculated. The cost of rehabilitation is also an issue that can impact this consideration. In addition to the cost of two surgical teams, when free flaps are used, it is a labor-intensive undertaking that creates a component of inefficiency of time—when one surgical team is not doing the entire procedure, this inefficiency adds indirectly to the cost of the reconstruction. A variety of unresolved issues also remain with regard to the advantages for a variety of reconstructive approaches. Although this issue is discussed in greater detail in a subsequent section, suffice it to say that it remains to be established unequivocally whether (1) pharyngeal reconstruction using sensate free flaps actually improves swallowing function, (2) free flap mandibular reconstruction is truly something other than cosmetic surgery, or (3) reinnervated muscle free flaps translate into superior approaches to achieving the goals of reconstruction. The literature, although it does contain some information, is somewhat compromised in resolving these issues because publications have been predominantly single-institution uncontrolled reports. Although some publications seemingly address these issues,9, 12
Stay updated, free articles. Join our Telegram channel